Running Head: LOCAL PROTEIN SURFACE CLASSIFICATION Characterization and Classification of Local Protein Surfaces Using Self-Organizing Map
نویسندگان
چکیده
Annotating protein structures is an urgent task as increasing number of protein structures of unknown function is being solved. To achieve this goal, it is critical to establish computational methods for characterizing and classifying protein local structures. We analyzed the similarity of local surface patches from 609 representative proteins considering shape and the electrostatic potential, which are represented by the 3D Zernike descriptors. Classification of local patches is done with the emergent self-organizing map (ESOM). We mapped patches at ligand bindingsites to investigate how they distribute and cluster among the ESOM map. We obtained 30-50 clusters of local surfaces of different characteristics, which will be useful for annotating surface of proteins.
منابع مشابه
Characterization and Classification of Local Protein Surfaces Using Self-Organizing Map
Annotating protein structures is an urgent task as increasing number of protein structures of unknown function is being solved. To achieve this goal, it is critical to establish computational methods for characterizing and classifying protein local structures. The authors analyzed the similarity of local surface patches from 609 representative proteins considering shape and the electrostatic po...
متن کاملClassification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملMining Biological Data Using Self-Organizing Map
This paper presents a novel method of mining biological data using a self-organizing map (SOM). After partitioning a set of protein sequences using SOM, conventional homology alignment is applied to each cluster to determine the conserved local motif (biological pattern) for the cluster. These local motifs are then regarded as rules for prediction and classification. In the application to the p...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009